import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.455345 |
| 2023-01-04 |
-0.163381 |
| 2023-01-05 |
-0.306777 |
| 2023-01-06 |
0.168787 |
| 2023-01-07 |
0.689750 |
| 2023-01-08 |
1.164823 |
| 2023-01-09 |
0.561895 |
| 2023-01-10 |
0.544220 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.402455 |
| 2023-01-04 |
0.001270 |
| 2023-01-05 |
0.500184 |
| 2023-01-06 |
0.666031 |
| 2023-01-07 |
0.601255 |
| 2023-01-08 |
-0.015943 |
| 2023-01-09 |
0.030061 |
| 2023-01-10 |
-0.082104 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.899961 |
| 2023-01-04 |
0.079906 |
| 2023-01-05 |
-0.614689 |
| 2023-01-06 |
0.622113 |
| 2023-01-07 |
0.200973 |
| 2023-01-08 |
0.856261 |
| 2023-01-09 |
0.109959 |
| 2023-01-10 |
0.020210 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.448851 |
| 2023-01-04 |
-0.976926 |
| 2023-01-05 |
-0.833225 |
| 2023-01-06 |
-1.006448 |
| 2023-01-07 |
-1.145399 |
| 2023-01-08 |
-1.095457 |
| 2023-01-09 |
-0.829080 |
| 2023-01-10 |
-0.046893 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.505105 |
| 2023-01-04 |
-0.122031 |
| 2023-01-05 |
-0.388545 |
| 2023-01-06 |
0.410296 |
| 2023-01-07 |
0.431501 |
| 2023-01-08 |
0.901595 |
| 2023-01-09 |
0.239899 |
| 2023-01-10 |
-0.223432 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.083860 |
| 2023-01-04 |
0.793722 |
| 2023-01-05 |
0.482279 |
| 2023-01-06 |
0.217652 |
| 2023-01-07 |
-0.175020 |
| 2023-01-08 |
-0.340376 |
| 2023-01-09 |
-0.347463 |
| 2023-01-10 |
-0.530346 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.010082 |
| 2023-01-04 |
0.220195 |
| 2023-01-05 |
0.873778 |
| 2023-01-06 |
1.019814 |
| 2023-01-07 |
0.053120 |
| 2023-01-08 |
-0.002058 |
| 2023-01-09 |
-0.229925 |
| 2023-01-10 |
0.311565 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.102824 |
| 2023-01-04 |
0.906991 |
| 2023-01-05 |
0.795885 |
| 2023-01-06 |
0.528194 |
| 2023-01-07 |
1.001081 |
| 2023-01-08 |
0.772227 |
| 2023-01-09 |
0.458938 |
| 2023-01-10 |
0.350847 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.017719 |
| 2023-01-04 |
-0.351434 |
| 2023-01-05 |
-1.007042 |
| 2023-01-06 |
-0.554440 |
| 2023-01-07 |
0.432515 |
| 2023-01-08 |
0.813879 |
| 2023-01-09 |
0.940191 |
| 2023-01-10 |
0.344685 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.013199 |
| 2023-01-04 |
-0.073481 |
| 2023-01-05 |
0.412134 |
| 2023-01-06 |
-0.224390 |
| 2023-01-07 |
-0.193373 |
| 2023-01-08 |
-1.065614 |
| 2023-01-09 |
-1.095660 |
| 2023-01-10 |
-1.140764 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.481464 |
| 2023-01-04 |
0.059991 |
| 2023-01-05 |
0.012221 |
| 2023-01-06 |
-0.064270 |
| 2023-01-07 |
-0.605293 |
| 2023-01-08 |
-0.076915 |
| 2023-01-09 |
0.072444 |
| 2023-01-10 |
1.055249 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.342117 |
| 2023-01-04 |
0.061042 |
| 2023-01-05 |
0.591093 |
| 2023-01-06 |
-0.297031 |
| 2023-01-07 |
-0.995933 |
| 2023-01-08 |
-0.342192 |
| 2023-01-09 |
0.172289 |
| 2023-01-10 |
0.856617 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.589539 |
| 2023-01-04 |
-0.356276 |
| 2023-01-05 |
-0.451450 |
| 2023-01-06 |
-0.187241 |
| 2023-01-07 |
-0.536320 |
| 2023-01-08 |
-0.289955 |
| 2023-01-09 |
-0.251856 |
| 2023-01-10 |
0.051579 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.072860 |
| 2023-01-04 |
-0.930916 |
| 2023-01-05 |
-1.033701 |
| 2023-01-06 |
-0.921453 |
| 2023-01-07 |
-1.058494 |
| 2023-01-08 |
-0.874826 |
| 2023-01-09 |
-0.729054 |
| 2023-01-10 |
-0.272282 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.813701 |
| 2023-01-04 |
-0.810985 |
| 2023-01-05 |
-0.848145 |
| 2023-01-06 |
0.110143 |
| 2023-01-07 |
-0.040091 |
| 2023-01-08 |
0.254453 |
| 2023-01-09 |
-0.190737 |
| 2023-01-10 |
0.107153 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.814854 |
| 2023-01-04 |
0.901178 |
| 2023-01-05 |
0.780190 |
| 2023-01-06 |
0.983484 |
| 2023-01-07 |
0.732861 |
| 2023-01-08 |
0.706328 |
| 2023-01-09 |
0.241912 |
| 2023-01-10 |
0.067061 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.707774 |
| 2023-01-04 |
0.662536 |
| 2023-01-05 |
-0.809043 |
| 2023-01-06 |
-0.312012 |
| 2023-01-07 |
-0.278850 |
| 2023-01-08 |
0.484439 |
| 2023-01-09 |
-0.019309 |
| 2023-01-10 |
-0.191957 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.507275 |
| 2023-01-04 |
0.207025 |
| 2023-01-05 |
0.353679 |
| 2023-01-06 |
-0.701729 |
| 2023-01-07 |
-0.699173 |
| 2023-01-08 |
-0.208695 |
| 2023-01-09 |
-0.363030 |
| 2023-01-10 |
-0.550154 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.211394 |
| 2023-01-04 |
-0.245213 |
| 2023-01-05 |
-0.231204 |
| 2023-01-06 |
-0.272467 |
| 2023-01-07 |
-0.155950 |
| 2023-01-08 |
-0.010890 |
| 2023-01-09 |
-0.536961 |
| 2023-01-10 |
-0.584466 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.401673 |
| 2023-01-04 |
0.085435 |
| 2023-01-05 |
-0.076751 |
| 2023-01-06 |
-0.841762 |
| 2023-01-07 |
-0.623008 |
| 2023-01-08 |
-0.942921 |
| 2023-01-09 |
-0.665248 |
| 2023-01-10 |
-0.435025 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.023341 |
| 2023-01-04 |
0.593240 |
| 2023-01-05 |
-0.195281 |
| 2023-01-06 |
-0.490133 |
| 2023-01-07 |
-0.794666 |
| 2023-01-08 |
0.311786 |
| 2023-01-09 |
0.367508 |
| 2023-01-10 |
0.165374 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.215975 |
| 2023-01-04 |
0.655326 |
| 2023-01-05 |
0.405062 |
| 2023-01-06 |
-0.063762 |
| 2023-01-07 |
-0.281627 |
| 2023-01-08 |
-0.088828 |
| 2023-01-09 |
0.139908 |
| 2023-01-10 |
0.314369 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.698106 |
| 2023-01-04 |
0.197327 |
| 2023-01-05 |
0.777726 |
| 2023-01-06 |
1.202514 |
| 2023-01-07 |
0.490491 |
| 2023-01-08 |
-0.323382 |
| 2023-01-09 |
-0.549922 |
| 2023-01-10 |
-0.657447 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.341768 |
| 2023-01-04 |
-0.061887 |
| 2023-01-05 |
0.372018 |
| 2023-01-06 |
-0.027458 |
| 2023-01-07 |
0.446095 |
| 2023-01-08 |
-0.213124 |
| 2023-01-09 |
0.279766 |
| 2023-01-10 |
-0.475471 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.603550 |
| 2023-01-04 |
-0.150682 |
| 2023-01-05 |
0.028362 |
| 2023-01-06 |
0.015139 |
| 2023-01-07 |
-0.420404 |
| 2023-01-08 |
0.436354 |
| 2023-01-09 |
-0.026366 |
| 2023-01-10 |
0.097097 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.120743 |
| 2023-01-04 |
-0.104357 |
| 2023-01-05 |
-0.294563 |
| 2023-01-06 |
-0.779888 |
| 2023-01-07 |
-1.092840 |
| 2023-01-08 |
-1.318567 |
| 2023-01-09 |
-0.831165 |
| 2023-01-10 |
0.290400 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.127478 |
| 2023-01-04 |
0.860556 |
| 2023-01-05 |
0.070050 |
| 2023-01-06 |
0.270364 |
| 2023-01-07 |
0.421033 |
| 2023-01-08 |
0.040567 |
| 2023-01-09 |
-0.566773 |
| 2023-01-10 |
-0.844156 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.511033 |
| 2023-01-04 |
1.006331 |
| 2023-01-05 |
0.797123 |
| 2023-01-06 |
0.716819 |
| 2023-01-07 |
0.064466 |
| 2023-01-08 |
0.750119 |
| 2023-01-09 |
0.612040 |
| 2023-01-10 |
0.718836 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.029495 |
| 2023-01-04 |
-0.392525 |
| 2023-01-05 |
-0.361904 |
| 2023-01-06 |
-0.164049 |
| 2023-01-07 |
0.138710 |
| 2023-01-08 |
-0.038777 |
| 2023-01-09 |
-0.236460 |
| 2023-01-10 |
-0.150957 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.867653 |
| 2023-01-04 |
0.104170 |
| 2023-01-05 |
-0.079328 |
| 2023-01-06 |
-0.389219 |
| 2023-01-07 |
-0.506333 |
| 2023-01-08 |
-0.964075 |
| 2023-01-09 |
-0.828829 |
| 2023-01-10 |
-1.028234 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.324976 |
| 2023-01-04 |
0.792374 |
| 2023-01-05 |
0.717894 |
| 2023-01-06 |
0.847115 |
| 2023-01-07 |
-0.098695 |
| 2023-01-08 |
0.020508 |
| 2023-01-09 |
0.415424 |
| 2023-01-10 |
1.172226 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.255621 |
| 2023-01-04 |
-0.550303 |
| 2023-01-05 |
-0.127713 |
| 2023-01-06 |
-0.020414 |
| 2023-01-07 |
-0.696512 |
| 2023-01-08 |
0.880131 |
| 2023-01-09 |
1.245384 |
| 2023-01-10 |
1.771658 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.076766 |
| 2023-01-04 |
0.429637 |
| 2023-01-05 |
-0.063516 |
| 2023-01-06 |
0.236112 |
| 2023-01-07 |
-0.001947 |
| 2023-01-08 |
0.023742 |
| 2023-01-09 |
0.316385 |
| 2023-01-10 |
-0.205092 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.016014 |
| 2023-01-04 |
0.171982 |
| 2023-01-05 |
-0.926093 |
| 2023-01-06 |
-1.127064 |
| 2023-01-07 |
-1.038746 |
| 2023-01-08 |
-0.965130 |
| 2023-01-09 |
-0.238579 |
| 2023-01-10 |
-0.216302 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.617640 |
| 2023-01-04 |
0.589801 |
| 2023-01-05 |
0.412427 |
| 2023-01-06 |
0.214879 |
| 2023-01-07 |
-0.131293 |
| 2023-01-08 |
-0.256870 |
| 2023-01-09 |
-0.334522 |
| 2023-01-10 |
-0.327717 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.060912 |
| 2023-01-04 |
-0.172716 |
| 2023-01-05 |
-0.434504 |
| 2023-01-06 |
-0.714644 |
| 2023-01-07 |
-0.469484 |
| 2023-01-08 |
-0.402860 |
| 2023-01-09 |
-0.165643 |
| 2023-01-10 |
0.110229 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.889194 |
| 2023-01-04 |
0.962296 |
| 2023-01-05 |
0.439898 |
| 2023-01-06 |
0.097016 |
| 2023-01-07 |
-0.701916 |
| 2023-01-08 |
0.135287 |
| 2023-01-09 |
-0.268747 |
| 2023-01-10 |
-0.341324 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.122877 |
| 2023-01-04 |
0.768545 |
| 2023-01-05 |
1.331648 |
| 2023-01-06 |
1.184160 |
| 2023-01-07 |
1.160225 |
| 2023-01-08 |
0.506771 |
| 2023-01-09 |
-0.124577 |
| 2023-01-10 |
-0.443260 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.468408 |
| 2023-01-04 |
-0.086723 |
| 2023-01-05 |
-0.409503 |
| 2023-01-06 |
-0.779904 |
| 2023-01-07 |
-0.629338 |
| 2023-01-08 |
-0.288806 |
| 2023-01-09 |
-0.160824 |
| 2023-01-10 |
0.064937 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.169324 |
| 2023-01-04 |
-0.625299 |
| 2023-01-05 |
-0.292334 |
| 2023-01-06 |
0.104323 |
| 2023-01-07 |
0.905070 |
| 2023-01-08 |
0.796666 |
| 2023-01-09 |
0.328287 |
| 2023-01-10 |
0.335575 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.220957 |
| 2023-01-04 |
-0.335426 |
| 2023-01-05 |
-0.331970 |
| 2023-01-06 |
-0.326188 |
| 2023-01-07 |
0.504867 |
| 2023-01-08 |
0.181993 |
| 2023-01-09 |
1.065133 |
| 2023-01-10 |
0.258067 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.931927 |
| 2023-01-04 |
-0.540880 |
| 2023-01-05 |
-0.956077 |
| 2023-01-06 |
-0.958678 |
| 2023-01-07 |
-0.998837 |
| 2023-01-08 |
-0.405979 |
| 2023-01-09 |
-0.190680 |
| 2023-01-10 |
0.881989 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.129914 |
| 2023-01-04 |
-0.013221 |
| 2023-01-05 |
0.361741 |
| 2023-01-06 |
-0.105830 |
| 2023-01-07 |
-0.687194 |
| 2023-01-08 |
-0.831380 |
| 2023-01-09 |
-0.599155 |
| 2023-01-10 |
0.189152 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.184475 |
| 2023-01-04 |
0.672227 |
| 2023-01-05 |
-0.175610 |
| 2023-01-06 |
-1.732273 |
| 2023-01-07 |
-1.269611 |
| 2023-01-08 |
-1.057342 |
| 2023-01-09 |
-0.709802 |
| 2023-01-10 |
-0.706753 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.749461 |
| 2023-01-04 |
-0.027555 |
| 2023-01-05 |
0.396270 |
| 2023-01-06 |
0.247447 |
| 2023-01-07 |
-0.509975 |
| 2023-01-08 |
-0.384418 |
| 2023-01-09 |
-0.573017 |
| 2023-01-10 |
-0.496493 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.370430 |
| 2023-01-04 |
0.480461 |
| 2023-01-05 |
0.964202 |
| 2023-01-06 |
1.236433 |
| 2023-01-07 |
0.585545 |
| 2023-01-08 |
0.524437 |
| 2023-01-09 |
0.770801 |
| 2023-01-10 |
1.279966 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.486559 |
| 2023-01-04 |
-0.315208 |
| 2023-01-05 |
-0.359074 |
| 2023-01-06 |
-0.178662 |
| 2023-01-07 |
0.984007 |
| 2023-01-08 |
1.046246 |
| 2023-01-09 |
0.496353 |
| 2023-01-10 |
-0.031026 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.226986 |
| 2023-01-04 |
0.504198 |
| 2023-01-05 |
0.413902 |
| 2023-01-06 |
0.692015 |
| 2023-01-07 |
-0.172914 |
| 2023-01-08 |
-0.222770 |
| 2023-01-09 |
-0.214817 |
| 2023-01-10 |
-0.210257 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.571714 |
| 2023-01-04 |
0.956100 |
| 2023-01-05 |
1.356414 |
| 2023-01-06 |
0.927804 |
| 2023-01-07 |
0.128436 |
| 2023-01-08 |
0.056696 |
| 2023-01-09 |
0.487728 |
| 2023-01-10 |
1.011505 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.501991 |
| 2023-01-04 |
-0.177344 |
| 2023-01-05 |
-0.104100 |
| 2023-01-06 |
-0.140712 |
| 2023-01-07 |
0.372670 |
| 2023-01-08 |
0.027844 |
| 2023-01-09 |
0.153230 |
| 2023-01-10 |
0.238420 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.283937 |
| 2023-01-04 |
-0.019113 |
| 2023-01-05 |
-0.281153 |
| 2023-01-06 |
-0.241880 |
| 2023-01-07 |
-0.649052 |
| 2023-01-08 |
0.486557 |
| 2023-01-09 |
0.359155 |
| 2023-01-10 |
0.705675 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.066424 |
| 2023-01-04 |
0.203665 |
| 2023-01-05 |
0.246943 |
| 2023-01-06 |
0.293614 |
| 2023-01-07 |
0.168777 |
| 2023-01-08 |
-0.001124 |
| 2023-01-09 |
-0.089598 |
| 2023-01-10 |
-0.060079 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.058485 |
| 2023-01-04 |
-0.097147 |
| 2023-01-05 |
0.241033 |
| 2023-01-06 |
0.581798 |
| 2023-01-07 |
0.484388 |
| 2023-01-08 |
0.403761 |
| 2023-01-09 |
-0.351264 |
| 2023-01-10 |
-0.286496 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.378837 |
| 2023-01-04 |
-0.818015 |
| 2023-01-05 |
-0.311032 |
| 2023-01-06 |
-0.038434 |
| 2023-01-07 |
0.350513 |
| 2023-01-08 |
0.394329 |
| 2023-01-09 |
0.221573 |
| 2023-01-10 |
0.334871 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.436111 |
| 2023-01-04 |
-0.769581 |
| 2023-01-05 |
-0.848826 |
| 2023-01-06 |
-0.526144 |
| 2023-01-07 |
-0.558130 |
| 2023-01-08 |
-0.279178 |
| 2023-01-09 |
-0.341613 |
| 2023-01-10 |
0.606236 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.797733 |
| 2023-01-04 |
0.170173 |
| 2023-01-05 |
0.526149 |
| 2023-01-06 |
0.478205 |
| 2023-01-07 |
0.572423 |
| 2023-01-08 |
1.071119 |
| 2023-01-09 |
0.435074 |
| 2023-01-10 |
0.199233 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.067164 |
| 2023-01-04 |
-0.419004 |
| 2023-01-05 |
-0.887660 |
| 2023-01-06 |
-0.914643 |
| 2023-01-07 |
-0.389626 |
| 2023-01-08 |
-0.059825 |
| 2023-01-09 |
-0.371384 |
| 2023-01-10 |
-0.094110 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.300930 |
| 2023-01-04 |
0.086051 |
| 2023-01-05 |
0.268919 |
| 2023-01-06 |
0.257376 |
| 2023-01-07 |
0.719108 |
| 2023-01-08 |
0.637391 |
| 2023-01-09 |
0.528254 |
| 2023-01-10 |
-0.253934 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.101143 |
| 2023-01-04 |
0.213756 |
| 2023-01-05 |
0.463253 |
| 2023-01-06 |
0.049552 |
| 2023-01-07 |
-0.408197 |
| 2023-01-08 |
-0.115535 |
| 2023-01-09 |
0.467059 |
| 2023-01-10 |
0.263123 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.114385 |
| 2023-01-04 |
-0.904886 |
| 2023-01-05 |
-0.574685 |
| 2023-01-06 |
0.405308 |
| 2023-01-07 |
0.255621 |
| 2023-01-08 |
0.292428 |
| 2023-01-09 |
-0.629605 |
| 2023-01-10 |
-0.441402 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.134436 |
| 2023-01-04 |
-0.027666 |
| 2023-01-05 |
-0.272544 |
| 2023-01-06 |
-0.004398 |
| 2023-01-07 |
-0.273488 |
| 2023-01-08 |
-0.069535 |
| 2023-01-09 |
-0.227589 |
| 2023-01-10 |
-0.234696 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.610867 |
| 2023-01-04 |
-1.048348 |
| 2023-01-05 |
-0.475476 |
| 2023-01-06 |
0.248439 |
| 2023-01-07 |
0.857446 |
| 2023-01-08 |
1.380015 |
| 2023-01-09 |
0.911190 |
| 2023-01-10 |
-0.199561 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.582221 |
| 2023-01-04 |
0.374788 |
| 2023-01-05 |
0.591080 |
| 2023-01-06 |
-0.021416 |
| 2023-01-07 |
0.260001 |
| 2023-01-08 |
0.554802 |
| 2023-01-09 |
0.412347 |
| 2023-01-10 |
-0.501018 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.030375 |
| 2023-01-04 |
0.267388 |
| 2023-01-05 |
-0.183730 |
| 2023-01-06 |
0.058515 |
| 2023-01-07 |
0.387964 |
| 2023-01-08 |
1.304983 |
| 2023-01-09 |
0.864905 |
| 2023-01-10 |
0.246982 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.646842 |
| 2023-01-04 |
-0.356523 |
| 2023-01-05 |
-0.589815 |
| 2023-01-06 |
-0.234761 |
| 2023-01-07 |
0.606317 |
| 2023-01-08 |
0.002866 |
| 2023-01-09 |
-0.566883 |
| 2023-01-10 |
-0.976871 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.202820 |
| 2023-01-04 |
-1.073122 |
| 2023-01-05 |
-0.630652 |
| 2023-01-06 |
-0.907455 |
| 2023-01-07 |
-0.591994 |
| 2023-01-08 |
-1.649600 |
| 2023-01-09 |
-1.425305 |
| 2023-01-10 |
-1.104728 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.415922 |
| 2023-01-04 |
0.480351 |
| 2023-01-05 |
-0.213164 |
| 2023-01-06 |
-0.222768 |
| 2023-01-07 |
-0.382319 |
| 2023-01-08 |
-0.592524 |
| 2023-01-09 |
-0.759940 |
| 2023-01-10 |
-0.596916 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.126880 |
| 2023-01-04 |
-0.195678 |
| 2023-01-05 |
-0.293899 |
| 2023-01-06 |
-0.329358 |
| 2023-01-07 |
0.214131 |
| 2023-01-08 |
-0.005472 |
| 2023-01-09 |
-0.175655 |
| 2023-01-10 |
-0.020069 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.104942 |
| 2023-01-04 |
-0.243313 |
| 2023-01-05 |
-0.218983 |
| 2023-01-06 |
-0.304048 |
| 2023-01-07 |
-0.016053 |
| 2023-01-08 |
-0.829299 |
| 2023-01-09 |
-0.806867 |
| 2023-01-10 |
-0.496284 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.120224 |
| 2023-01-04 |
0.266281 |
| 2023-01-05 |
0.292036 |
| 2023-01-06 |
0.159905 |
| 2023-01-07 |
-0.139391 |
| 2023-01-08 |
0.181078 |
| 2023-01-09 |
0.570614 |
| 2023-01-10 |
0.063435 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.532802 |
| 2023-01-04 |
0.527380 |
| 2023-01-05 |
0.582443 |
| 2023-01-06 |
0.003714 |
| 2023-01-07 |
0.015719 |
| 2023-01-08 |
-0.211742 |
| 2023-01-09 |
0.165809 |
| 2023-01-10 |
0.506944 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.401207 |
| 2023-01-04 |
-0.512625 |
| 2023-01-05 |
-0.223882 |
| 2023-01-06 |
-0.680219 |
| 2023-01-07 |
-0.370883 |
| 2023-01-08 |
-0.438501 |
| 2023-01-09 |
0.322293 |
| 2023-01-10 |
-0.296953 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.339588 |
| 2023-01-04 |
-0.610681 |
| 2023-01-05 |
-0.525021 |
| 2023-01-06 |
-0.549489 |
| 2023-01-07 |
-0.532428 |
| 2023-01-08 |
-0.656072 |
| 2023-01-09 |
-0.442848 |
| 2023-01-10 |
0.126679 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.512736 |
| 2023-01-04 |
0.888266 |
| 2023-01-05 |
-0.050354 |
| 2023-01-06 |
-0.012928 |
| 2023-01-07 |
-0.659232 |
| 2023-01-08 |
-0.510048 |
| 2023-01-09 |
-1.005483 |
| 2023-01-10 |
-0.936165 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.433583 |
| 2023-01-04 |
0.792257 |
| 2023-01-05 |
0.506155 |
| 2023-01-06 |
0.878339 |
| 2023-01-07 |
0.706814 |
| 2023-01-08 |
0.582394 |
| 2023-01-09 |
0.281476 |
| 2023-01-10 |
0.461342 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.558317 |
| 2023-01-04 |
0.075532 |
| 2023-01-05 |
0.268273 |
| 2023-01-06 |
0.544400 |
| 2023-01-07 |
0.294550 |
| 2023-01-08 |
0.589538 |
| 2023-01-09 |
0.293471 |
| 2023-01-10 |
0.766885 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.141232 |
| 2023-01-04 |
-0.487285 |
| 2023-01-05 |
-0.413201 |
| 2023-01-06 |
-0.491183 |
| 2023-01-07 |
0.236887 |
| 2023-01-08 |
0.077676 |
| 2023-01-09 |
0.040283 |
| 2023-01-10 |
0.294769 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.985650 |
| 2023-01-04 |
0.683876 |
| 2023-01-05 |
-0.046205 |
| 2023-01-06 |
-0.003317 |
| 2023-01-07 |
-0.084904 |
| 2023-01-08 |
0.044604 |
| 2023-01-09 |
-0.155584 |
| 2023-01-10 |
-0.521945 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.654648 |
| 2023-01-04 |
-0.134653 |
| 2023-01-05 |
-0.467529 |
| 2023-01-06 |
-0.375553 |
| 2023-01-07 |
-0.816602 |
| 2023-01-08 |
-0.378400 |
| 2023-01-09 |
0.510663 |
| 2023-01-10 |
0.327654 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.147124 |
| 2023-01-04 |
-0.201465 |
| 2023-01-05 |
0.587111 |
| 2023-01-06 |
-0.000935 |
| 2023-01-07 |
-0.259204 |
| 2023-01-08 |
-0.554145 |
| 2023-01-09 |
-0.666738 |
| 2023-01-10 |
-0.712376 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.745820 |
| 2023-01-04 |
-0.238319 |
| 2023-01-05 |
0.229252 |
| 2023-01-06 |
0.202335 |
| 2023-01-07 |
-0.091536 |
| 2023-01-08 |
-0.336329 |
| 2023-01-09 |
-0.014810 |
| 2023-01-10 |
0.173246 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.546037 |
| 2023-01-04 |
0.272624 |
| 2023-01-05 |
-0.800859 |
| 2023-01-06 |
-0.856195 |
| 2023-01-07 |
-0.671862 |
| 2023-01-08 |
-0.620309 |
| 2023-01-09 |
-0.987121 |
| 2023-01-10 |
-0.862656 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.704583 |
| 2023-01-04 |
1.101888 |
| 2023-01-05 |
1.116637 |
| 2023-01-06 |
0.925777 |
| 2023-01-07 |
0.161418 |
| 2023-01-08 |
-0.518703 |
| 2023-01-09 |
-0.513563 |
| 2023-01-10 |
-0.797520 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.046132 |
| 2023-01-04 |
0.432483 |
| 2023-01-05 |
0.646260 |
| 2023-01-06 |
0.817102 |
| 2023-01-07 |
0.697185 |
| 2023-01-08 |
0.553752 |
| 2023-01-09 |
0.512009 |
| 2023-01-10 |
0.261162 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.138319 |
| 2023-01-04 |
0.000927 |
| 2023-01-05 |
0.535187 |
| 2023-01-06 |
-0.242753 |
| 2023-01-07 |
0.250688 |
| 2023-01-08 |
-0.617608 |
| 2023-01-09 |
-0.039421 |
| 2023-01-10 |
-0.430437 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.303397 |
| 2023-01-04 |
0.469538 |
| 2023-01-05 |
0.041636 |
| 2023-01-06 |
0.637604 |
| 2023-01-07 |
0.352207 |
| 2023-01-08 |
0.418492 |
| 2023-01-09 |
0.101066 |
| 2023-01-10 |
0.359604 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.099308 |
| 2023-01-04 |
0.522281 |
| 2023-01-05 |
0.563832 |
| 2023-01-06 |
0.001320 |
| 2023-01-07 |
0.331830 |
| 2023-01-08 |
0.058759 |
| 2023-01-09 |
0.244914 |
| 2023-01-10 |
-0.813847 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.326351 |
| 2023-01-04 |
0.051144 |
| 2023-01-05 |
0.614782 |
| 2023-01-06 |
0.699296 |
| 2023-01-07 |
0.523722 |
| 2023-01-08 |
-0.397622 |
| 2023-01-09 |
-0.554841 |
| 2023-01-10 |
-0.528872 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.135202 |
| 2023-01-04 |
0.088438 |
| 2023-01-05 |
-0.212928 |
| 2023-01-06 |
-0.806488 |
| 2023-01-07 |
-0.180999 |
| 2023-01-08 |
0.007500 |
| 2023-01-09 |
0.494235 |
| 2023-01-10 |
0.420073 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.583546 |
| 2023-01-04 |
0.744659 |
| 2023-01-05 |
0.636913 |
| 2023-01-06 |
0.400781 |
| 2023-01-07 |
-0.121813 |
| 2023-01-08 |
0.036643 |
| 2023-01-09 |
0.889329 |
| 2023-01-10 |
1.304443 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.260725 |
| 2023-01-04 |
0.297989 |
| 2023-01-05 |
0.659348 |
| 2023-01-06 |
0.339316 |
| 2023-01-07 |
-0.059587 |
| 2023-01-08 |
0.064990 |
| 2023-01-09 |
0.235433 |
| 2023-01-10 |
0.142407 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.493000 |
| 2023-01-04 |
0.703067 |
| 2023-01-05 |
0.690350 |
| 2023-01-06 |
0.723113 |
| 2023-01-07 |
-0.774348 |
| 2023-01-08 |
-0.881685 |
| 2023-01-09 |
-1.119207 |
| 2023-01-10 |
-0.110548 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.612276 |
| 2023-01-04 |
-0.921852 |
| 2023-01-05 |
-0.835669 |
| 2023-01-06 |
-1.426976 |
| 2023-01-07 |
-1.850759 |
| 2023-01-08 |
-0.633430 |
| 2023-01-09 |
0.074075 |
| 2023-01-10 |
0.316132 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.269394 |
| 2023-01-04 |
-0.299846 |
| 2023-01-05 |
0.270143 |
| 2023-01-06 |
0.151301 |
| 2023-01-07 |
0.587234 |
| 2023-01-08 |
0.293593 |
| 2023-01-09 |
-0.043310 |
| 2023-01-10 |
-0.448451 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.072609 |
| 2023-01-04 |
0.164583 |
| 2023-01-05 |
-0.206294 |
| 2023-01-06 |
0.150925 |
| 2023-01-07 |
-0.348694 |
| 2023-01-08 |
0.127242 |
| 2023-01-09 |
0.224922 |
| 2023-01-10 |
0.372208 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.055877 |
| 2023-01-04 |
-1.137456 |
| 2023-01-05 |
-0.520142 |
| 2023-01-06 |
-0.709258 |
| 2023-01-07 |
0.356650 |
| 2023-01-08 |
0.651046 |
| 2023-01-09 |
0.053049 |
| 2023-01-10 |
-0.270969 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.068049 |
| 2023-01-04 |
-0.204957 |
| 2023-01-05 |
-0.692901 |
| 2023-01-06 |
-0.650863 |
| 2023-01-07 |
-0.661791 |
| 2023-01-08 |
0.364537 |
| 2023-01-09 |
0.853307 |
| 2023-01-10 |
0.559224 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.241123 |
| 2023-01-04 |
0.669134 |
| 2023-01-05 |
0.318362 |
| 2023-01-06 |
0.220104 |
| 2023-01-07 |
-0.516816 |
| 2023-01-08 |
-0.407526 |
| 2023-01-09 |
-0.514186 |
| 2023-01-10 |
-0.091986 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.010403 |
| 2023-01-04 |
-0.184859 |
| 2023-01-05 |
0.013134 |
| 2023-01-06 |
0.302571 |
| 2023-01-07 |
0.245625 |
| 2023-01-08 |
-0.410193 |
| 2023-01-09 |
-0.360840 |
| 2023-01-10 |
-0.869657 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.227587 |
| 2023-01-04 |
0.577241 |
| 2023-01-05 |
0.105369 |
| 2023-01-06 |
-0.063355 |
| 2023-01-07 |
-0.451225 |
| 2023-01-08 |
-0.077175 |
| 2023-01-09 |
-0.415658 |
| 2023-01-10 |
-0.133982 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.827663 |
| 2023-01-04 |
-0.332915 |
| 2023-01-05 |
-0.168378 |
| 2023-01-06 |
-0.013022 |
| 2023-01-07 |
-0.251757 |
| 2023-01-08 |
0.301443 |
| 2023-01-09 |
0.623432 |
| 2023-01-10 |
1.264532 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.235776 |
| 2023-01-04 |
0.203603 |
| 2023-01-05 |
-0.163674 |
| 2023-01-06 |
-0.795903 |
| 2023-01-07 |
-0.165685 |
| 2023-01-08 |
0.209210 |
| 2023-01-09 |
0.519017 |
| 2023-01-10 |
0.385270 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.391188 |
| 2023-01-04 |
0.048226 |
| 2023-01-05 |
0.646386 |
| 2023-01-06 |
-0.258191 |
| 2023-01-07 |
-0.359915 |
| 2023-01-08 |
-0.431606 |
| 2023-01-09 |
-0.176984 |
| 2023-01-10 |
0.245705 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.197709 |
| 2023-01-04 |
-0.335769 |
| 2023-01-05 |
-0.632891 |
| 2023-01-06 |
-0.423709 |
| 2023-01-07 |
-0.257928 |
| 2023-01-08 |
-0.109233 |
| 2023-01-09 |
-0.077447 |
| 2023-01-10 |
-0.275011 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.307813 |
| 2023-01-04 |
-0.434811 |
| 2023-01-05 |
-0.381929 |
| 2023-01-06 |
-0.807948 |
| 2023-01-07 |
-1.371196 |
| 2023-01-08 |
-1.820017 |
| 2023-01-09 |
-1.463153 |
| 2023-01-10 |
-0.861100 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.097403 |
| 2023-01-04 |
0.089192 |
| 2023-01-05 |
0.254633 |
| 2023-01-06 |
-0.189367 |
| 2023-01-07 |
-0.046906 |
| 2023-01-08 |
-0.072243 |
| 2023-01-09 |
-0.290940 |
| 2023-01-10 |
-0.765354 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.033850 |
| 2023-01-04 |
-0.287465 |
| 2023-01-05 |
0.000446 |
| 2023-01-06 |
0.158375 |
| 2023-01-07 |
0.666035 |
| 2023-01-08 |
-0.042908 |
| 2023-01-09 |
0.009786 |
| 2023-01-10 |
-0.545363 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.146758 |
| 2023-01-04 |
0.591519 |
| 2023-01-05 |
-0.137787 |
| 2023-01-06 |
-1.546540 |
| 2023-01-07 |
-1.132671 |
| 2023-01-08 |
-0.728461 |
| 2023-01-09 |
0.349061 |
| 2023-01-10 |
-0.104302 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.489582 |
| 2023-01-04 |
0.471024 |
| 2023-01-05 |
1.105642 |
| 2023-01-06 |
0.597977 |
| 2023-01-07 |
0.175113 |
| 2023-01-08 |
-0.155421 |
| 2023-01-09 |
0.123730 |
| 2023-01-10 |
0.425730 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.369535 |
| 2023-01-04 |
-0.545041 |
| 2023-01-05 |
-0.800068 |
| 2023-01-06 |
-0.809425 |
| 2023-01-07 |
-0.631431 |
| 2023-01-08 |
-0.407850 |
| 2023-01-09 |
-0.260406 |
| 2023-01-10 |
0.308223 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.183659 |
| 2023-01-04 |
-0.119652 |
| 2023-01-05 |
-0.266598 |
| 2023-01-06 |
-0.839058 |
| 2023-01-07 |
-0.355040 |
| 2023-01-08 |
0.573541 |
| 2023-01-09 |
0.439808 |
| 2023-01-10 |
0.074707 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.483255 |
| 2023-01-04 |
-0.890570 |
| 2023-01-05 |
-0.325387 |
| 2023-01-06 |
0.294872 |
| 2023-01-07 |
0.586812 |
| 2023-01-08 |
0.096617 |
| 2023-01-09 |
0.139114 |
| 2023-01-10 |
-0.596817 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.363461 |
| 2023-01-04 |
0.933810 |
| 2023-01-05 |
-0.136836 |
| 2023-01-06 |
-0.427018 |
| 2023-01-07 |
-1.036642 |
| 2023-01-08 |
-1.094978 |
| 2023-01-09 |
-0.271558 |
| 2023-01-10 |
-0.227785 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.565084 |
| 2023-01-04 |
-0.401098 |
| 2023-01-05 |
0.366443 |
| 2023-01-06 |
0.097784 |
| 2023-01-07 |
-0.084587 |
| 2023-01-08 |
-0.536190 |
| 2023-01-09 |
0.002674 |
| 2023-01-10 |
-0.284731 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.229994 |
| 2023-01-04 |
0.449233 |
| 2023-01-05 |
-0.084476 |
| 2023-01-06 |
-0.070399 |
| 2023-01-07 |
-0.542838 |
| 2023-01-08 |
-0.800218 |
| 2023-01-09 |
-1.191586 |
| 2023-01-10 |
-0.980551 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.272661 |
| 2023-01-04 |
-0.123523 |
| 2023-01-05 |
-0.228095 |
| 2023-01-06 |
-0.491768 |
| 2023-01-07 |
-0.197100 |
| 2023-01-08 |
0.081166 |
| 2023-01-09 |
-0.012130 |
| 2023-01-10 |
0.143853 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.404596 |
| 2023-01-04 |
-0.224932 |
| 2023-01-05 |
-0.250394 |
| 2023-01-06 |
-0.455426 |
| 2023-01-07 |
-0.664473 |
| 2023-01-08 |
-0.931310 |
| 2023-01-09 |
-1.413107 |
| 2023-01-10 |
-1.135399 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.623948 |
| 2023-01-04 |
-0.470427 |
| 2023-01-05 |
-0.136939 |
| 2023-01-06 |
0.829972 |
| 2023-01-07 |
0.058540 |
| 2023-01-08 |
-0.027514 |
| 2023-01-09 |
-0.081985 |
| 2023-01-10 |
0.150239 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.369107 |
| 2023-01-04 |
0.560506 |
| 2023-01-05 |
-0.321748 |
| 2023-01-06 |
-0.552387 |
| 2023-01-07 |
-0.314746 |
| 2023-01-08 |
-0.243086 |
| 2023-01-09 |
0.012839 |
| 2023-01-10 |
0.118713 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.541198 |
| 2023-01-04 |
0.089901 |
| 2023-01-05 |
-0.334090 |
| 2023-01-06 |
-0.385323 |
| 2023-01-07 |
0.061620 |
| 2023-01-08 |
0.197957 |
| 2023-01-09 |
-0.642131 |
| 2023-01-10 |
-0.706187 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.455448 |
| 2023-01-04 |
0.908308 |
| 2023-01-05 |
0.822342 |
| 2023-01-06 |
0.976044 |
| 2023-01-07 |
1.257226 |
| 2023-01-08 |
0.604898 |
| 2023-01-09 |
0.243576 |
| 2023-01-10 |
-0.072402 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.570896 |
| 2023-01-04 |
0.464861 |
| 2023-01-05 |
-0.451654 |
| 2023-01-06 |
-0.756106 |
| 2023-01-07 |
-0.852941 |
| 2023-01-08 |
-0.624085 |
| 2023-01-09 |
-0.619821 |
| 2023-01-10 |
-0.652955 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.379312 |
| 2023-01-04 |
-0.917941 |
| 2023-01-05 |
-0.821152 |
| 2023-01-06 |
-1.138969 |
| 2023-01-07 |
0.000504 |
| 2023-01-08 |
0.032043 |
| 2023-01-09 |
0.154384 |
| 2023-01-10 |
-0.241546 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.012934 |
| 2023-01-04 |
0.439128 |
| 2023-01-05 |
0.394586 |
| 2023-01-06 |
0.554015 |
| 2023-01-07 |
0.532732 |
| 2023-01-08 |
0.784559 |
| 2023-01-09 |
0.533355 |
| 2023-01-10 |
0.356181 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.316240 |
| 2023-01-04 |
-0.853967 |
| 2023-01-05 |
-0.447950 |
| 2023-01-06 |
-0.315779 |
| 2023-01-07 |
-0.323273 |
| 2023-01-08 |
-0.550318 |
| 2023-01-09 |
-0.421425 |
| 2023-01-10 |
-0.726292 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.428800 |
| 2023-01-04 |
0.688354 |
| 2023-01-05 |
0.420143 |
| 2023-01-06 |
0.921137 |
| 2023-01-07 |
-0.194677 |
| 2023-01-08 |
0.239369 |
| 2023-01-09 |
-0.398747 |
| 2023-01-10 |
-0.173778 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.423789 |
| 2023-01-04 |
-0.672689 |
| 2023-01-05 |
-0.440503 |
| 2023-01-06 |
-0.771668 |
| 2023-01-07 |
-0.506637 |
| 2023-01-08 |
0.049220 |
| 2023-01-09 |
0.609881 |
| 2023-01-10 |
0.532720 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.051869 |
| 2023-01-04 |
0.542503 |
| 2023-01-05 |
0.913459 |
| 2023-01-06 |
1.120806 |
| 2023-01-07 |
0.915087 |
| 2023-01-08 |
0.708357 |
| 2023-01-09 |
-0.065681 |
| 2023-01-10 |
-0.556563 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.247284 |
| 2023-01-04 |
-0.200941 |
| 2023-01-05 |
0.049446 |
| 2023-01-06 |
0.111223 |
| 2023-01-07 |
0.357921 |
| 2023-01-08 |
-0.338011 |
| 2023-01-09 |
-0.635472 |
| 2023-01-10 |
-0.958967 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.359781 |
| 2023-01-04 |
0.167589 |
| 2023-01-05 |
-0.102978 |
| 2023-01-06 |
-0.654832 |
| 2023-01-07 |
-0.389083 |
| 2023-01-08 |
-0.143092 |
| 2023-01-09 |
-0.205954 |
| 2023-01-10 |
-0.428056 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.370280 |
| 2023-01-04 |
0.481394 |
| 2023-01-05 |
0.106396 |
| 2023-01-06 |
0.273393 |
| 2023-01-07 |
-0.776936 |
| 2023-01-08 |
-0.135672 |
| 2023-01-09 |
-0.582935 |
| 2023-01-10 |
0.214053 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.058641 |
| 2023-01-04 |
-0.660589 |
| 2023-01-05 |
-0.106876 |
| 2023-01-06 |
0.123809 |
| 2023-01-07 |
1.472027 |
| 2023-01-08 |
1.041045 |
| 2023-01-09 |
0.440032 |
| 2023-01-10 |
-0.958953 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.805561 |
| 2023-01-04 |
-0.880996 |
| 2023-01-05 |
-0.963040 |
| 2023-01-06 |
-0.726059 |
| 2023-01-07 |
-1.526570 |
| 2023-01-08 |
-1.267852 |
| 2023-01-09 |
-0.755761 |
| 2023-01-10 |
0.452397 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.202842 |
| 2023-01-04 |
-0.150494 |
| 2023-01-05 |
0.322694 |
| 2023-01-06 |
0.228173 |
| 2023-01-07 |
-0.305958 |
| 2023-01-08 |
-0.936114 |
| 2023-01-09 |
-0.368715 |
| 2023-01-10 |
0.142515 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.296635 |
| 2023-01-04 |
-0.993193 |
| 2023-01-05 |
-0.399082 |
| 2023-01-06 |
0.152050 |
| 2023-01-07 |
0.404973 |
| 2023-01-08 |
0.479680 |
| 2023-01-09 |
-0.280209 |
| 2023-01-10 |
0.219804 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.559069 |
| 2023-01-04 |
-0.162447 |
| 2023-01-05 |
-0.243295 |
| 2023-01-06 |
-0.257820 |
| 2023-01-07 |
-0.213019 |
| 2023-01-08 |
0.266281 |
| 2023-01-09 |
0.744930 |
| 2023-01-10 |
1.008320 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.025235 |
| 2023-01-04 |
-1.289819 |
| 2023-01-05 |
-0.379340 |
| 2023-01-06 |
-0.267912 |
| 2023-01-07 |
-0.113072 |
| 2023-01-08 |
-0.396749 |
| 2023-01-09 |
-0.841764 |
| 2023-01-10 |
-0.701255 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.042054 |
| 2023-01-04 |
1.339234 |
| 2023-01-05 |
1.377624 |
| 2023-01-06 |
1.535001 |
| 2023-01-07 |
1.079872 |
| 2023-01-08 |
0.338095 |
| 2023-01-09 |
-0.594645 |
| 2023-01-10 |
-0.391941 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.153975 |
| 2023-01-04 |
0.021615 |
| 2023-01-05 |
0.832148 |
| 2023-01-06 |
0.017946 |
| 2023-01-07 |
-0.213805 |
| 2023-01-08 |
-0.557507 |
| 2023-01-09 |
-0.859813 |
| 2023-01-10 |
-0.637174 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.066284 |
| 2023-01-04 |
0.340306 |
| 2023-01-05 |
1.227561 |
| 2023-01-06 |
1.179159 |
| 2023-01-07 |
1.198017 |
| 2023-01-08 |
-0.148784 |
| 2023-01-09 |
0.278712 |
| 2023-01-10 |
-0.046667 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.487963 |
| 2023-01-04 |
0.128652 |
| 2023-01-05 |
-0.546572 |
| 2023-01-06 |
-0.931533 |
| 2023-01-07 |
-1.030245 |
| 2023-01-08 |
-0.662141 |
| 2023-01-09 |
0.369202 |
| 2023-01-10 |
1.405673 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.520899 |
| 2023-01-04 |
0.194174 |
| 2023-01-05 |
0.485593 |
| 2023-01-06 |
0.460869 |
| 2023-01-07 |
0.078063 |
| 2023-01-08 |
0.116637 |
| 2023-01-09 |
-0.057558 |
| 2023-01-10 |
0.754374 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.247683 |
| 2023-01-04 |
0.383692 |
| 2023-01-05 |
-0.261938 |
| 2023-01-06 |
0.271301 |
| 2023-01-07 |
0.197454 |
| 2023-01-08 |
0.631162 |
| 2023-01-09 |
0.495746 |
| 2023-01-10 |
0.454159 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.211562 |
| 2023-01-04 |
0.393843 |
| 2023-01-05 |
-0.432299 |
| 2023-01-06 |
-0.264888 |
| 2023-01-07 |
-0.790859 |
| 2023-01-08 |
0.075019 |
| 2023-01-09 |
0.489868 |
| 2023-01-10 |
0.997044 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.210471 |
| 2023-01-04 |
-0.451907 |
| 2023-01-05 |
-0.476627 |
| 2023-01-06 |
-0.575007 |
| 2023-01-07 |
-0.221643 |
| 2023-01-08 |
0.209576 |
| 2023-01-09 |
0.432273 |
| 2023-01-10 |
0.634620 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.201221 |
| 2023-01-04 |
-0.091083 |
| 2023-01-05 |
-0.000771 |
| 2023-01-06 |
0.354604 |
| 2023-01-07 |
0.588211 |
| 2023-01-08 |
0.903359 |
| 2023-01-09 |
0.781414 |
| 2023-01-10 |
0.142398 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.423916 |
| 2023-01-04 |
0.235073 |
| 2023-01-05 |
0.005337 |
| 2023-01-06 |
-0.415547 |
| 2023-01-07 |
-0.723591 |
| 2023-01-08 |
-0.218722 |
| 2023-01-09 |
-0.263410 |
| 2023-01-10 |
-0.405857 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.970210 |
| 2023-01-04 |
0.747069 |
| 2023-01-05 |
0.390360 |
| 2023-01-06 |
-0.158094 |
| 2023-01-07 |
0.208571 |
| 2023-01-08 |
0.682224 |
| 2023-01-09 |
1.075258 |
| 2023-01-10 |
0.527747 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.365640 |
| 2023-01-04 |
-0.509748 |
| 2023-01-05 |
-0.469951 |
| 2023-01-06 |
0.132518 |
| 2023-01-07 |
-0.132354 |
| 2023-01-08 |
-0.326957 |
| 2023-01-09 |
0.022739 |
| 2023-01-10 |
-0.804692 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.630281 |
| 2023-01-04 |
-1.101716 |
| 2023-01-05 |
-0.890430 |
| 2023-01-06 |
-0.210775 |
| 2023-01-07 |
0.223719 |
| 2023-01-08 |
0.882527 |
| 2023-01-09 |
0.240407 |
| 2023-01-10 |
0.552824 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.480310 |
| 2023-01-04 |
-0.788081 |
| 2023-01-05 |
-0.886506 |
| 2023-01-06 |
-0.158388 |
| 2023-01-07 |
-0.263106 |
| 2023-01-08 |
-0.722937 |
| 2023-01-09 |
-0.942612 |
| 2023-01-10 |
-0.383462 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.835568 |
| 2023-01-04 |
-0.371852 |
| 2023-01-05 |
-0.054314 |
| 2023-01-06 |
0.410700 |
| 2023-01-07 |
0.547225 |
| 2023-01-08 |
0.686826 |
| 2023-01-09 |
0.904469 |
| 2023-01-10 |
0.524506 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.521440 |
| 2023-01-04 |
-0.377617 |
| 2023-01-05 |
-0.164561 |
| 2023-01-06 |
0.201039 |
| 2023-01-07 |
0.571393 |
| 2023-01-08 |
0.446819 |
| 2023-01-09 |
0.828393 |
| 2023-01-10 |
0.143347 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.719045 |
| 2023-01-04 |
-0.565321 |
| 2023-01-05 |
-0.237902 |
| 2023-01-06 |
0.138528 |
| 2023-01-07 |
-0.043587 |
| 2023-01-08 |
-0.730611 |
| 2023-01-09 |
-1.432142 |
| 2023-01-10 |
-1.502665 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.578951 |
| 2023-01-04 |
0.397546 |
| 2023-01-05 |
0.930672 |
| 2023-01-06 |
0.151198 |
| 2023-01-07 |
0.363619 |
| 2023-01-08 |
0.083409 |
| 2023-01-09 |
0.450078 |
| 2023-01-10 |
0.137171 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.092505 |
| 2023-01-04 |
0.455492 |
| 2023-01-05 |
0.573058 |
| 2023-01-06 |
0.237825 |
| 2023-01-07 |
-0.486967 |
| 2023-01-08 |
-1.036851 |
| 2023-01-09 |
-0.821136 |
| 2023-01-10 |
-0.239722 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.048061 |
| 2023-01-04 |
0.025597 |
| 2023-01-05 |
0.130717 |
| 2023-01-06 |
0.074941 |
| 2023-01-07 |
0.199306 |
| 2023-01-08 |
0.058113 |
| 2023-01-09 |
-0.505475 |
| 2023-01-10 |
-0.573455 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.485720 |
| 2023-01-04 |
-1.293306 |
| 2023-01-05 |
-1.307850 |
| 2023-01-06 |
-0.558696 |
| 2023-01-07 |
0.174659 |
| 2023-01-08 |
0.508805 |
| 2023-01-09 |
0.737557 |
| 2023-01-10 |
0.483961 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.533572 |
| 2023-01-04 |
1.159530 |
| 2023-01-05 |
1.903672 |
| 2023-01-06 |
1.178035 |
| 2023-01-07 |
0.472457 |
| 2023-01-08 |
-0.110938 |
| 2023-01-09 |
0.020089 |
| 2023-01-10 |
0.796628 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.148146 |
| 2023-01-04 |
0.141417 |
| 2023-01-05 |
0.623128 |
| 2023-01-06 |
0.312488 |
| 2023-01-07 |
-0.021038 |
| 2023-01-08 |
-0.379884 |
| 2023-01-09 |
-0.208589 |
| 2023-01-10 |
-0.113431 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.399650 |
| 2023-01-04 |
-0.253899 |
| 2023-01-05 |
-0.362225 |
| 2023-01-06 |
0.103722 |
| 2023-01-07 |
0.171926 |
| 2023-01-08 |
0.614449 |
| 2023-01-09 |
0.155761 |
| 2023-01-10 |
-0.122357 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.448234 |
| 2023-01-04 |
0.611672 |
| 2023-01-05 |
0.362814 |
| 2023-01-06 |
0.187213 |
| 2023-01-07 |
-0.581487 |
| 2023-01-08 |
-0.532864 |
| 2023-01-09 |
-0.308371 |
| 2023-01-10 |
0.431991 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.912384 |
| 2023-01-04 |
-0.376025 |
| 2023-01-05 |
-0.208905 |
| 2023-01-06 |
0.649539 |
| 2023-01-07 |
0.220801 |
| 2023-01-08 |
0.353801 |
| 2023-01-09 |
-0.097418 |
| 2023-01-10 |
0.031999 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.611788 |
| 2023-01-04 |
0.354494 |
| 2023-01-05 |
0.130820 |
| 2023-01-06 |
0.445980 |
| 2023-01-07 |
0.016074 |
| 2023-01-08 |
0.302467 |
| 2023-01-09 |
-0.050303 |
| 2023-01-10 |
0.188200 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.389865 |
| 2023-01-04 |
0.046616 |
| 2023-01-05 |
-0.653472 |
| 2023-01-06 |
0.052290 |
| 2023-01-07 |
-0.630065 |
| 2023-01-08 |
-0.388018 |
| 2023-01-09 |
0.027877 |
| 2023-01-10 |
0.438080 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.445034 |
| 2023-01-04 |
0.238360 |
| 2023-01-05 |
0.182640 |
| 2023-01-06 |
-0.023348 |
| 2023-01-07 |
-1.131669 |
| 2023-01-08 |
-0.729122 |
| 2023-01-09 |
-1.285561 |
| 2023-01-10 |
-1.294591 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.358068 |
| 2023-01-04 |
-0.234021 |
| 2023-01-05 |
-0.034493 |
| 2023-01-06 |
0.282133 |
| 2023-01-07 |
1.035111 |
| 2023-01-08 |
0.965076 |
| 2023-01-09 |
0.903509 |
| 2023-01-10 |
1.471558 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.078324 |
| 2023-01-04 |
-0.092938 |
| 2023-01-05 |
-0.001258 |
| 2023-01-06 |
0.850358 |
| 2023-01-07 |
0.648864 |
| 2023-01-08 |
0.124194 |
| 2023-01-09 |
-0.003931 |
| 2023-01-10 |
-0.857921 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.147758 |
| 2023-01-04 |
0.751920 |
| 2023-01-05 |
0.323247 |
| 2023-01-06 |
0.393485 |
| 2023-01-07 |
0.244269 |
| 2023-01-08 |
0.487670 |
| 2023-01-09 |
0.350086 |
| 2023-01-10 |
0.231998 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.104536 |
| 2023-01-04 |
0.506101 |
| 2023-01-05 |
0.645572 |
| 2023-01-06 |
0.718213 |
| 2023-01-07 |
0.307541 |
| 2023-01-08 |
0.188036 |
| 2023-01-09 |
-0.115730 |
| 2023-01-10 |
0.032886 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.343321 |
| 2023-01-04 |
-0.522433 |
| 2023-01-05 |
1.017902 |
| 2023-01-06 |
0.976013 |
| 2023-01-07 |
0.422286 |
| 2023-01-08 |
-0.202736 |
| 2023-01-09 |
-0.015175 |
| 2023-01-10 |
0.022672 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.036077 |
| 2023-01-04 |
0.152943 |
| 2023-01-05 |
0.876135 |
| 2023-01-06 |
0.237968 |
| 2023-01-07 |
0.122802 |
| 2023-01-08 |
-0.778276 |
| 2023-01-09 |
-1.606364 |
| 2023-01-10 |
-1.621935 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.001610 |
| 2023-01-04 |
0.542180 |
| 2023-01-05 |
0.624347 |
| 2023-01-06 |
0.704234 |
| 2023-01-07 |
0.750091 |
| 2023-01-08 |
0.089142 |
| 2023-01-09 |
-0.399897 |
| 2023-01-10 |
-0.842921 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.005868 |
| 2023-01-04 |
-0.114212 |
| 2023-01-05 |
0.230123 |
| 2023-01-06 |
0.680361 |
| 2023-01-07 |
0.269371 |
| 2023-01-08 |
0.287218 |
| 2023-01-09 |
0.580000 |
| 2023-01-10 |
0.135145 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.571494 |
| 2023-01-04 |
0.023560 |
| 2023-01-05 |
0.155882 |
| 2023-01-06 |
0.172446 |
| 2023-01-07 |
0.269263 |
| 2023-01-08 |
-0.214387 |
| 2023-01-09 |
-0.056708 |
| 2023-01-10 |
-0.540265 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.335836 |
| 2023-01-04 |
-0.338232 |
| 2023-01-05 |
-0.150512 |
| 2023-01-06 |
0.062376 |
| 2023-01-07 |
0.108221 |
| 2023-01-08 |
-0.265490 |
| 2023-01-09 |
-0.535777 |
| 2023-01-10 |
-0.390527 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.313017 |
| 2023-01-04 |
-0.244963 |
| 2023-01-05 |
-0.110323 |
| 2023-01-06 |
0.290386 |
| 2023-01-07 |
0.970517 |
| 2023-01-08 |
1.024513 |
| 2023-01-09 |
1.223266 |
| 2023-01-10 |
0.048274 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.021768 |
| 2023-01-04 |
0.203249 |
| 2023-01-05 |
0.277334 |
| 2023-01-06 |
0.101015 |
| 2023-01-07 |
-0.479227 |
| 2023-01-08 |
-0.780095 |
| 2023-01-09 |
-0.667551 |
| 2023-01-10 |
-0.143559 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
1.063601 |
| 2023-01-04 |
0.647385 |
| 2023-01-05 |
0.442010 |
| 2023-01-06 |
0.380654 |
| 2023-01-07 |
0.371754 |
| 2023-01-08 |
0.175125 |
| 2023-01-09 |
-0.047337 |
| 2023-01-10 |
-0.272813 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.411035 |
| 2023-01-04 |
-0.896340 |
| 2023-01-05 |
-0.907279 |
| 2023-01-06 |
-1.028834 |
| 2023-01-07 |
-0.596290 |
| 2023-01-08 |
-0.541959 |
| 2023-01-09 |
-0.324523 |
| 2023-01-10 |
-0.155162 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.891503 |
| 2023-01-04 |
0.517398 |
| 2023-01-05 |
0.396161 |
| 2023-01-06 |
0.757684 |
| 2023-01-07 |
0.437260 |
| 2023-01-08 |
0.790908 |
| 2023-01-09 |
1.244624 |
| 2023-01-10 |
0.538919 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.019007 |
| 2023-01-04 |
-0.116074 |
| 2023-01-05 |
0.078428 |
| 2023-01-06 |
0.614310 |
| 2023-01-07 |
0.033174 |
| 2023-01-08 |
-0.421501 |
| 2023-01-09 |
-1.442976 |
| 2023-01-10 |
-0.464428 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.519881 |
| 2023-01-04 |
0.539748 |
| 2023-01-05 |
-0.011987 |
| 2023-01-06 |
-0.301042 |
| 2023-01-07 |
-0.082847 |
| 2023-01-08 |
0.337910 |
| 2023-01-09 |
0.223405 |
| 2023-01-10 |
-0.370213 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.619276 |
| 2023-01-04 |
-0.771621 |
| 2023-01-05 |
-0.376052 |
| 2023-01-06 |
0.194218 |
| 2023-01-07 |
0.771545 |
| 2023-01-08 |
1.019696 |
| 2023-01-09 |
0.689676 |
| 2023-01-10 |
-0.207914 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.602635 |
| 2023-01-04 |
0.906536 |
| 2023-01-05 |
0.965196 |
| 2023-01-06 |
0.691066 |
| 2023-01-07 |
0.509557 |
| 2023-01-08 |
0.048667 |
| 2023-01-09 |
-1.145670 |
| 2023-01-10 |
-1.178171 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.243407 |
| 2023-01-04 |
0.600342 |
| 2023-01-05 |
0.617498 |
| 2023-01-06 |
0.118732 |
| 2023-01-07 |
0.405813 |
| 2023-01-08 |
0.108158 |
| 2023-01-09 |
0.284491 |
| 2023-01-10 |
-0.602624 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.922694 |
| 2023-01-04 |
-0.122531 |
| 2023-01-05 |
0.231432 |
| 2023-01-06 |
-0.738356 |
| 2023-01-07 |
-1.507553 |
| 2023-01-08 |
-1.106339 |
| 2023-01-09 |
0.053723 |
| 2023-01-10 |
0.637436 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.679071 |
| 2023-01-04 |
1.315491 |
| 2023-01-05 |
0.755491 |
| 2023-01-06 |
0.381330 |
| 2023-01-07 |
-0.400650 |
| 2023-01-08 |
0.010114 |
| 2023-01-09 |
-0.142561 |
| 2023-01-10 |
0.407329 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.143202 |
| 2023-01-04 |
0.208104 |
| 2023-01-05 |
-0.227629 |
| 2023-01-06 |
-0.629356 |
| 2023-01-07 |
-1.170754 |
| 2023-01-08 |
-1.245489 |
| 2023-01-09 |
-1.424537 |
| 2023-01-10 |
-0.772381 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.295168 |
| 2023-01-04 |
0.202005 |
| 2023-01-05 |
0.135366 |
| 2023-01-06 |
-0.478274 |
| 2023-01-07 |
-0.507533 |
| 2023-01-08 |
-0.147489 |
| 2023-01-09 |
0.503332 |
| 2023-01-10 |
0.293669 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.565530 |
| 2023-01-04 |
-0.308642 |
| 2023-01-05 |
0.389267 |
| 2023-01-06 |
0.850026 |
| 2023-01-07 |
0.447985 |
| 2023-01-08 |
0.393063 |
| 2023-01-09 |
0.153449 |
| 2023-01-10 |
0.045863 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.732918 |
| 2023-01-04 |
-0.597687 |
| 2023-01-05 |
0.357321 |
| 2023-01-06 |
0.627524 |
| 2023-01-07 |
0.213489 |
| 2023-01-08 |
-0.466244 |
| 2023-01-09 |
-0.733401 |
| 2023-01-10 |
-0.193267 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.310122 |
| 2023-01-04 |
-0.408376 |
| 2023-01-05 |
-1.052861 |
| 2023-01-06 |
-0.623900 |
| 2023-01-07 |
-0.432326 |
| 2023-01-08 |
-0.183999 |
| 2023-01-09 |
0.376699 |
| 2023-01-10 |
0.479068 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.452365 |
| 2023-01-04 |
-0.243421 |
| 2023-01-05 |
-0.100982 |
| 2023-01-06 |
-0.907891 |
| 2023-01-07 |
-0.345717 |
| 2023-01-08 |
-0.387809 |
| 2023-01-09 |
0.131190 |
| 2023-01-10 |
-0.033567 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-1.506276 |
| 2023-01-04 |
-0.498841 |
| 2023-01-05 |
-0.178505 |
| 2023-01-06 |
-0.063059 |
| 2023-01-07 |
-0.806469 |
| 2023-01-08 |
-0.683483 |
| 2023-01-09 |
-0.400796 |
| 2023-01-10 |
0.060494 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.517591 |
| 2023-01-04 |
-0.655006 |
| 2023-01-05 |
0.056456 |
| 2023-01-06 |
0.480070 |
| 2023-01-07 |
0.335149 |
| 2023-01-08 |
0.463081 |
| 2023-01-09 |
0.190150 |
| 2023-01-10 |
0.673476 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.750144 |
| 2023-01-04 |
-0.948654 |
| 2023-01-05 |
-0.568036 |
| 2023-01-06 |
-0.006688 |
| 2023-01-07 |
0.546198 |
| 2023-01-08 |
0.311679 |
| 2023-01-09 |
0.857501 |
| 2023-01-10 |
1.027786 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.347982 |
| 2023-01-04 |
-0.246175 |
| 2023-01-05 |
-0.462607 |
| 2023-01-06 |
-0.200484 |
| 2023-01-07 |
-0.012464 |
| 2023-01-08 |
0.540844 |
| 2023-01-09 |
0.278513 |
| 2023-01-10 |
0.375615 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
-0.944818 |
| 2023-01-04 |
-1.258446 |
| 2023-01-05 |
-0.319060 |
| 2023-01-06 |
-0.807838 |
| 2023-01-07 |
-0.244823 |
| 2023-01-08 |
-0.203143 |
| 2023-01-09 |
0.740145 |
| 2023-01-10 |
0.987105 |
import pandas as pd
import numpy as np
rng = pd.date_range('2023-01-01', periods=10, freq='D')
df = pd.DataFrame({'date': rng, 'value': np.random.randn(10)})
df.set_index('date').rolling(window=3).mean()
|
value |
| date |
|
| 2023-01-01 |
NaN |
| 2023-01-02 |
NaN |
| 2023-01-03 |
0.058596 |
| 2023-01-04 |
-0.582462 |
| 2023-01-05 |
-0.755552 |
| 2023-01-06 |
0.256950 |
| 2023-01-07 |
0.361268 |
| 2023-01-08 |
0.693772 |
| 2023-01-09 |
-0.866219 |
| 2023-01-10 |
-0.814639 |
Score: 200